
Rhapsody®

IBM Engineering Systems Design
Rhapsody ‐ TestConductor Add On

Testing on a Linux Target

Release 2.8.4

1

License Agreement

No part of this publication may be reproduced, transmitted, stored in a retrieval system, nor translated
into any human or computer language, in any form or by any means, electronic, mechanical, magnetic,
optical, chemical, manual or otherwise, without the prior written permission of the copyright owner,
BTC Embedded Systems AG.

The information in this publication is subject to change without notice, and BTC Embedded Systems
AG assumes no responsibility for any errors which may appear herein. No warranties, either expressed
or implied, are made regarding Rhapsody software including documentation and its fitness for any
particular purpose.

Trademarks

IBM® Engineering Systems Design Rhapsody®, IBM® Engineering Systems Design Rhapsody® ‐
Automatic Test Generation Add On, and IBM® Engineering Systems Design Rhapsody® ‐
TestConductor Add On are registered trademarks of IBM Corporation.

All other product or company names mentioned herein may be trademarks or registered trademarks of
their respective owners.

© Copyright 2000-2022 BTC Embedded Systems AG. All rights reserved.

2

Contents
Content
Contents..3

Introduction...4

Preparing the Execution...5
Rhapsody Share for Linux Targets...5

Compilation of code coverage..5

Preparing the Rhapsody model...6
Folder for generated code...6
IP address of target...6
Invoke make to build the application...6
Example...7
Invoke the application (animation based mode)...7
Invoke the application (assertion based mode)...8

3

Introduction
This document describes how TestCases can be executed with IBM® Engineering Systems
Design Rhapsody® TestConductor Add On on a Linux target, while Rhapsody is running on a
Windows or Linux host. We assume that the basic installation is already done: Rhapsody is
installed on the Windows or Linux host, a Linux distribution supported by Rhapsody is
installed on the target.

There are different ways to set up the test process on the Linux targets, depending on the used
work flow to build the code for the target, start the execution of the tested application and
access the collected results some details might differ from the example shown in this
document.

In this example we also assume a TCP/IP connection between the host and the Linux target
machine is available. Rhapsody running on the host will invoke the tested application on the
target via this TCP/IP connection, and during test execution the communication between
Rhapsody animation and the application uses TCP/IP. Also needed is a network drive or a
folder which is accessible both from the host and the Linux target machine, for example by
using Samba: When generating code for the modeled application Rhapsody writes the files
into this folder, and the code is compiled on the connected Linux machine. In this document
we will further refer to this shared folder as “/mnt/winlinux”. We will describe the execution
of TestCases on a Linux target using an example. There are two different modes to execute
tests with TestConductor, animation based mode and assertion based mode. Assertion based
mode is available since Rhapsody 7.6, it is the default mode for newly created
TestArchitectures. Depending on the used testing mode, there are some differences when
testing on a Linux target: The example will show the needed settings for both modes.

4

Preparing the Execution
Rhapsody Share for Linux Targets

In order to compile and link the tested application the Rhapsody framework for Linux is
needed. The Linux framework has to be deployed on the Linux target. A tar archive with this
framework can be found in the folder \Share\LangCpp (or \Share\LangC for C) of the
Rhapsody installation: Copy the file linuxShare.tar to /mnt/winlinux and untar it there. The
archive contains header and library files and a folder Share/etc with some scripts and helper
tools.

In addition, to compile the tested application some additional header and source files provided
by TestConductor are needed: Per default the code generation configurations of a test
architecture have the additional include path “$OMROOT/../TestConductor”, OMROOT
usually points to the Rhapsody Share folder. If you create a folder “TestConductor” on the
Linux machine in the same folder where the Rhapsody Share folder is located and copy the
needed TestConductor header files into the TestConductor folder the default additional
include path matches to this folder.

In this example, create a folder “TestConductor” in the folder /mnt/winlinux and copy the
three files TestConductor.h, TestConductor_C.c and TestConductor_C.h from the folder
Rhapsody/TestConductor/ of your host Rhapsody installation to
/mnt/winlinux/TestConductor. For computation of model or code coverage results also the
files TC_ModCov.h and TCCoverage.h should be copied to the TestConductor folder on the
Linux machine. These header files are also included in the archive
“tc_codecov_tools_linux.tgz” located in the folder “LinuxTools” of the TestConductor
installation for Windows, see below.

If the Linux Share is installed somewhere else on the Linux machine you should make sure
the folders “Share” and “TestConductor” have the same parent folder otherwise the include
path of the code generation configuration must be adjusted.

Compilation of code coverage

When testing with assertion based testing mode computation of code coverage is supported
also when executing tests on a Linux target. To be able to collect the code coverage
information the source code of the SUT needs to be instrumented (“annotated”) by tools
which are part of the TestConductor installation. Annotating the code can either be done on
the Windows host (using the Windows variants of these tools, installed in the TestConductor
folder) or during a compilation on the Linux target using native Linux variants of these tools.

The Linux tools are provided in the archive “tc_codecov_tools_linux.tgz” located in the folder
“LinuxTools” of the TestConductor installation for Windows and need to be deployed on the
Linux machine. This archive contains a folder “TestConductor” with some binaries needed for
computation of code coverage, some header files needed to build the test application (see
section above) and some additional files for generation of the html code coverage results. It is
recommended to deploy the folder TestConductor into the same folder where the Rhapsody

5

Share folder is located: This way the include paths of the code generation configurations don’t
have to be adjusted.

Preparing the Rhapsody model

Folder for generated code

Start Rhapsody and open the model you want to test. It is not needed that the whole Rhapsody
model is stored in the folder /mnt/winlinux, the files with the data of the Rhapsody project can
be stored on the Windows host. Only the generated code for the tested application has to be
generated into this folder: The code needs to be compiled on the target. If the model is not
stored in /mnt/winlinux, open the feature tab of the Linux CG configuration, go to the
“Settings” tab, uncheck the check box “Directory – Use Default”, and enter a path in
/mnt/winlinux (in Windows path notation).

If you now invoke the code generation for the Linux CG configuration the code for the
application will be generated into /mnt/winlinux and is ready to be compiled on the Linux
machine.

IP address of target

If the application is compiled with animation instrumentation, a TCP/IP connection between
the running application and Rhapsody is needed. For this connection, the IP address of the
host machine must be generated into the code before the application is compiled and
executed. The IP address of the host should be entered in the property
CPP_CG::Linux::RemoteHost (for C++) or C_CG::Linux::RemoteHost (for C).

Note: To execute tests in animation based mode, the tested application must be compiled with
animation instrumentation. For assertion based mode, animation instrumentation is not needed
(but testing of applications with animation instrumentation is supported, too).

Invoke make to build the application

The property CPP_CG:Linux:InvokeMake (for C++) or CPP_CG:Linux:InvokeMake (for C)
of the CG configuration can be used to specify the necessary command(s) to compile the
application on the Linux target. The command entered in this property is performed when the
user invokes the menu Code->Build.

The shell script linuxmake in the folder /mnt/winlinux/Share/etc can be used to invoke the
compiler. The script has to be invoked with at least two arguments: the first argument is the
path to the Makefile generated for the CG configuration. The second argument has to be one
of the make targets build, rebuild or clean. This script uses two other scripts (removeCR.sh to
remove carriage return characters from the Makefile and changeOMROOT.sh to set the
correct path for the header and library files of the Linux framework) to prepare the Makefile,
and then invokes the make command.
SSH can be used log in onto the Linux target and to invoke the linuxmake script from the
host.

6

Example

The screenshot shows an example for the settings of the properties. In this example the
program “plink.exe” is used to establish the connection between the host and the Linux target.
plink is part of the “PuTTY” toolset; PuTTY is a free SSH implementation for Windows and
Unix.

The values of the changed properties are:

 InvokeExecutable (only needed for animation based mode): “plink.exe Rhaphat cd
/home/chriwa/Rhapsody/Models/V71_RiCpp_Radio/TPkg_Radio_Comp/TC_Linux; ./
$executable”

 InvokeMake: “plink.exe Rhaphat cd
/home/chriwa/Rhapsody/Models/V71_RiCpp_Radio/TPkg_Radio_Comp/TC_Linux;
/home/chriwa/Rhapsody/Share/etc/linuxmake $makefile $maketarget”

 RemoteHost: This should be set to the IP address of the host machine

PuTTY allows to save the settings of a session (login machine, login name, etc.) and re-load a
session. In this example a session named “Rhaphat” is used.

If the build of the application is invoked the program plink.exe loads the session “Rhaphat”
and logs in on the Linux target. Then the directory is changed to the directory containing the
generated code and the script linuxmake is invoked to compile the application.

If the application is launched (in animation based mode), the program plink.exe loads the
session “Rhaphat” and logs in on the Linux target. Then the directory is changed to the
directory with the application binary and the application is launched.

Invoke the application (animation based mode)

When executing tests in animation based mode, TestConductor is starting the tested
application by calling a Rhapsody API. The command used by Rhapsody to start the
application is defined in the property CPP_CG::Linux::InvokeExecutable (for C++) or
C_CG::Linux::InvokeExecutable (for C). This property should be modified only for
animation based testing mode.
Again SSH can be used to login onto the Linux machine and to launch the application. For a
better automation of the TestCase execution (especially if multiple TestCases of a
TestContext/TestPackage shall be executed) the SSH login on the Linux target can be done
using an authorized key: This way the user does not have to enter a password each time the

7

application is launched. A series of TestCases can be fully automatically executed on the
Linux target.
If the TestCase execution is activated TestConductor starts the application of the used
TestConfiguration (if the TestContext of the TestCase does not have a TestConfiguration,
then the currently active CG Configuration is used). Currently, TestConductor does not
support having more than one TestConfiguration for a TestContext. If there are multiple CG
Configurations (for example for different environments, Windows host and Linux target), and
the user wants to perform tests in animation based mode with a different CG Configuration,
the existing TestConfiguration has to be deleted and a new TestConfiguration pointing to
another CG Configuration has to be added to the TestContext.

Invoke the application (assertion based mode)

For assertion based testing mode, there are some tags to configure the code generation
configuration used for testing. Some of these tags need to be modified to automate execution
of tests on the Linux target.

When executing tests in animation based mode, TestConductor directly starting the tested
application by calling a batch file on the host. The content of this batch file is automatically
generated by TestConductor and can be configured by the user in the tag
rtc_testexecution_script_content of the code generation configuration. An example for the
content of this script is (when using plink to log in to the target):

plink.exe Rhaphat "/mnt/winlinux/<CG path>/binary -resultfile /mnt/winlinux/<CG
path>/rtcresult.rst -logfile /mnt/winlinux/<CG path>/rtclog.txt -tcontext $tcontext -tcase
$tcase

<CG path> is the path to the generated code, binary is the name of the tested application.
$tcontext and $tcase will be provided by TestConductor depending on which element is
executed. When executing tests, TestConductor invokes the batch file on the host and the
batch file does the remote invocation of the application on the target. After the test has been
executed, another batch file is called to evaluate the outcome of the test and to generate an
html report.

When starting the execution of a TestCase in assertion based mode, TestConductor the
application of the used TestConfiguration. If the currently active CG Configuration is not the
TestingConfiguration but a Configuration in the same CG Component, then the active CG
Configuration is started.

8

	Contents
	Introduction
	Preparing the Execution
	Rhapsody Share for Linux Targets
	Compilation of code coverage
	Preparing the Rhapsody model
	Folder for generated code
	IP address of target
	Invoke make to build the application
	Example
	Invoke the application (animation based mode)
	Invoke the application (assertion based mode)

